topicModelingTickets/corporization.py

141 lines
3.3 KiB
Python

# -*- coding: utf-8 -*-
import csv
import sys
from miscellaneous import *
import time
from datetime import datetime
import re
import textacy
from textacy.preprocess import normalize_whitespace
from scipy import *
import os
csv.field_size_limit(sys.maxsize)
FILEPATH = os.path.dirname(os.path.realpath(__file__)) + "/"
# load config
config_ini = FILEPATH + "config.ini"
config = ConfigParser.ConfigParser()
with open(config_ini) as f:
config.read_file(f)
def ticketcsv_to_textStream(path2csv, content_collumn_name):
"""
:param path2csv: string
:param content_collumn_name: string
:return: string-generator
"""
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
content_collumn = 0 # standardvalue
for i, lst in enumerate(stream):
if i == 0:
# look for desired column
for j, col in enumerate(lst):
if col == content_collumn_name:
content_collumn = j
else:
yield lst[content_collumn]
def ticket_csv_to_DictStream(path2csv,content_collumn_name):
"""
:param path2csv: string
:param content_collumn_name: string
:return: dict-generator
"""
stream = textacy.fileio.read_csv(path2csv, delimiter=";") # ,encoding='utf8')
content_collumn = 0 # standardvalue
metaindices = []
metalist = []
metadata_template = {}
for i, lst in enumerate(stream):
if i == 0:
for j, col in enumerate(lst):
if "icketNumb" in col:
col = "TicketNumber"
metalist.append(str(col))
metaindices.append(j)
metadata_template = dict(
zip(metalist, metaindices)) # zB {'Subject' : 1, 'categoryName' : 3, 'Solution' : 10}
else:
metadata = metadata_template.copy()
for key, value in metadata.items():
metadata[key] = lst[value]
yield metadata
##################################################################################################
content_collumn_name = config.get("tickets","content_collumn_name")
path2de_csv = FILEPATH + config.get("de_corpus","input")
corpus_de_path = FILEPATH + config.get("de_corpus", "path")
def ticketcsv2Corpus(path2_csv, corpus_path, content_collumn_name, lang, printrandom=0):
# print paths
path_csv_split = path2_csv.split("/")
filename = path_csv_split[len(path_csv_split) - 1]
logprint("Corporization of {0} at {1}".format(filename, datetime.now()))
raw_corpus = textacy.Corpus(lang)
## add files to textacy-corpi,
raw_corpus.add_texts(
ticketcsv_to_textStream(path2_csv, content_collumn_name),
ticket_csv_to_DictStream(path2_csv,content_collumn_name)
)
# leere docs aus corpi kicken
raw_corpus.remove(lambda doc: len(doc) == 0)
logprint("corpus-length: {}".format(len(raw_corpus)))
# save corpus
raw_name = lang + "_raw"
save_corpus(corpus=raw_corpus, corpus_path=corpus_path, corpus_name=raw_name)
return raw_corpus
def main():
start = time.time()
raw_corpus = ticketcsv2Corpus(path2de_csv,corpus_de_path,content_collumn_name,lang="de")
end = time.time()
logprint("Time Elapsed Corporization:{0} min".format((end - start) / 60))
return raw_corpus
if __name__ == "__main__":
main()