397 lines
11 KiB
Python
397 lines
11 KiB
Python
# -*- coding: utf-8 -*-
|
|
import re
|
|
import time
|
|
import json
|
|
|
|
import spacy
|
|
import textacy
|
|
|
|
start = time.time()
|
|
|
|
import enchant
|
|
|
|
from datetime import datetime
|
|
|
|
import xml.etree.ElementTree as ET
|
|
|
|
print(datetime.now())
|
|
|
|
"""
|
|
PARSER=spacy.load("de")
|
|
|
|
|
|
corpus = textacy.Corpus(PARSER)
|
|
|
|
testcontetn = [
|
|
"fdsfdsfsd",
|
|
"juzdtjlkö",
|
|
"gfadojplk"
|
|
]
|
|
|
|
testmetda = [
|
|
{"categoryName":"zhb","Solution":"","Subject":"schulungstest"},
|
|
{"categoryName":"neuanschluss","Solution":"subject","Subject":"telephone contract"},
|
|
{"categoryName":"zhb","Solution":"","Subject":"setuji"}
|
|
]
|
|
|
|
|
|
def makecontent(testcontetn):
|
|
for content in testcontetn:
|
|
yield content
|
|
|
|
|
|
def makemeta( testmetda):
|
|
for metdata in testmetda:
|
|
yield metdata
|
|
|
|
|
|
corpus.add_texts(
|
|
makecontent(testcontetn),
|
|
makemeta(testmetda)
|
|
)
|
|
|
|
print(corpus)
|
|
"""
|
|
|
|
|
|
from postal.parser import parse_address
|
|
|
|
|
|
address = "Nicolas Rauner LS Biomaterialien und Polymerwissenschaften Fakultät Bio- und Chemieingenieurwesen TU Dortmund D-44227 Dortmund Tel: + 49-(0)231 / 755 - 3015 Fax: + 49-(0)231 / 755 - 2480"
|
|
print(parse_address(address))
|
|
|
|
|
|
address = "Technische Universität Dortmund Maschinenbau/Lehrstuhl für Förder- und Lagerwesen LogistikCampus Joseph-von-Fraunhofer-Str. 2-4 D-44227 Dortmund "
|
|
print(parse_address(address))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
corpus_path = "/home/jannis.grundmann/PycharmProjects/topicModelingTickets/corpus/"
|
|
corpus_name = "testcorpus"
|
|
|
|
|
|
#corpus.save(corpus_path, name=corpus_name, compression=corpus_compression)
|
|
#corpus = textacy.Corpus.load(corpus_path, name=corpus_name, compression=corpus_compression)
|
|
|
|
|
|
|
|
import pathlib
|
|
|
|
strings_path = pathlib.Path(corpus_path + 'strings.json')
|
|
path_lexemes_bin_ = pathlib.Path(corpus_path + 'lexemes.bin')
|
|
|
|
PARSER.vocab.dump(path_lexemes_bin_)
|
|
nlp.vocab.load_lexemes(path_lexemes_bin_)
|
|
|
|
|
|
def save_corpus(corpus_path,corpus_name):
|
|
|
|
# save stringstore
|
|
stringstore_path = corpus_path + corpus_name + '_strings.json'
|
|
with open(stringstore_path, "w") as file:
|
|
PARSER.vocab.strings.dump(file)
|
|
|
|
|
|
#save content
|
|
contentpath = corpus_path + corpus_name+ "_content.bin"
|
|
textacy.fileio.write_spacy_docs((doc.spacy_doc for doc in corpus),contentpath)
|
|
|
|
|
|
#save meta
|
|
metapath = corpus_path + corpus_name +"_meta.json"
|
|
textacy.fileio.write_json_lines((doc.metadata for doc in corpus), metapath)
|
|
|
|
|
|
|
|
def load_corpus(corpus_path,corpus_name):
|
|
# load new lang
|
|
nlp = spacy.load("de")
|
|
|
|
#load stringstore
|
|
stringstore_path = corpus_path + corpus_name + '_strings.json'
|
|
with open(stringstore_path,"r") as file:
|
|
nlp.vocab.strings.load(file)
|
|
|
|
# define corpus
|
|
corpus = textacy.Corpus(nlp)
|
|
|
|
# load meta
|
|
metapath = corpus_path + corpus_name +"_meta.json"
|
|
metadata_stream = textacy.fileio.read_json_lines(metapath)
|
|
|
|
#load content
|
|
contentpath = corpus_path + corpus_name+ "_content.bin"
|
|
spacy_docs = textacy.fileio.read_spacy_docs(corpus.spacy_vocab, contentpath)
|
|
|
|
for spacy_doc, metadata in zip(spacy_docs, metadata_stream):
|
|
corpus.add_doc(
|
|
textacy.Doc(spacy_doc, lang=corpus.spacy_lang, metadata=metadata))
|
|
|
|
return corpus
|
|
|
|
|
|
save_corpus(corpus_path,corpus_name)
|
|
|
|
print(load_corpus(corpus_path,corpus_name))
|
|
|
|
"""
|
|
|
|
"""
|
|
def normalizeSynonyms(default_return_first_Syn=False, parser=PARSER):
|
|
#return lambda doc : parser(" ".join([tok.lower_ for tok in doc]))
|
|
return lambda doc : parser(" ".join([getFirstSynonym(tok.lower_, THESAURUS, default_return_first_Syn=default_return_first_Syn) for tok in doc]))
|
|
|
|
def getFirstSynonym(word, thesaurus, default_return_first_Syn=False):
|
|
if not isinstance(word, str):
|
|
return str(word)
|
|
|
|
word = word.lower()
|
|
|
|
# durch den thesaurrus iterieren
|
|
for syn_block in thesaurus: # syn_block ist eine liste mit Synonymen
|
|
|
|
for syn in syn_block:
|
|
syn = syn.lower()
|
|
if re.match(r'\A[\w-]+\Z', syn): # falls syn einzelwort ist
|
|
if word == syn:
|
|
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
|
|
else: # falls es ein satz ist
|
|
if word in syn:
|
|
return str(getHauptform(syn_block, word, default_return_first_Syn=default_return_first_Syn))
|
|
return str(word) # zur Not, das ursrpüngliche Wort zurückgeben
|
|
|
|
def getHauptform(syn_block, word, default_return_first_Syn=False):
|
|
for syn in syn_block:
|
|
syn = syn.lower()
|
|
|
|
if "hauptform" in syn and len(syn.split(" ")) <= 2:
|
|
# nicht ausgeben, falls es in Klammern steht#todo gibts macnmal?? klammern aus
|
|
for w in syn.split(" "):
|
|
if not re.match(r'\([^)]+\)', w):
|
|
return w
|
|
|
|
if default_return_first_Syn:
|
|
# falls keine hauptform enthalten ist, das erste Synonym zurückgeben, was kein satz ist und nicht in klammern steht
|
|
for w in syn_block:
|
|
if not re.match(r'\([^)]+\)', w):
|
|
return w
|
|
return word # zur Not, das ursrpüngliche Wort zurückgeben
|
|
"""
|
|
|
|
"""
|
|
path2xml="/home/jannis.grundmann/PycharmProjects/topicModelingTickets/deWordNet.xml"
|
|
|
|
tree = ET.parse(path2xml, ET.XMLParser(encoding="utf-8"))
|
|
root = tree.getroot()
|
|
|
|
for r in root:
|
|
for element in r:
|
|
|
|
if element.tag == "Synset":
|
|
attrib = element.attrib
|
|
for i,subentry in enumerate(element):
|
|
if subentry.tag == "Lemma" and subentry.attrib["partOfSpeech"] == "n":
|
|
string = (subentry.attrib["writtenForm"])
|
|
# replaceRockDots
|
|
string = re.sub(r'[ß]', "ss", string)
|
|
string = re.sub(r'[ö]', "oe", string)
|
|
string = re.sub(r'[ü]', "ue", string)
|
|
string = re.sub(r'[ä]', "ae", string)
|
|
|
|
# seperate_words_on_regex:
|
|
string = " ".join(re.compile(regex_specialChars).split(string))
|
|
string_list=string.split()
|
|
if len(string_list) == 1:
|
|
nomen.append(string.lower().strip())
|
|
"""
|
|
|
|
"""
|
|
import re
|
|
from collections import Counter
|
|
|
|
def words(text): return re.findall(r'\w+', text.lower())
|
|
|
|
WORDS = Counter(words(open('/home/jannis.grundmann/PycharmProjects/topicModelingTickets/deu_news_2015_1M-sentences.txt').read()))
|
|
|
|
def P(word, N=sum(WORDS.values())):
|
|
"Probability of `word`."
|
|
return WORDS[word] / N
|
|
|
|
def correction(word):
|
|
"Most probable spelling correction for word."
|
|
return max(candidates(word), key=P)
|
|
|
|
def candidates(word):
|
|
"Generate possible spelling corrections for word."
|
|
return (known([word]) or known(edits1(word)) or known(edits2(word)) or [word])
|
|
|
|
def known(words):
|
|
"The subset of `words` that appear in the dictionary of WORDS."
|
|
return set(w for w in words if w in WORDS)
|
|
|
|
def edits1(word):
|
|
"All edits that are one edit away from `word`."
|
|
letters = 'abcdefghijklmnopqrstuvwxyz'
|
|
splits = [(word[:i], word[i:]) for i in range(len(word) + 1)]
|
|
deletes = [L + R[1:] for L, R in splits if R]
|
|
transposes = [L + R[1] + R[0] + R[2:] for L, R in splits if len(R)>1]
|
|
replaces = [L + c + R[1:] for L, R in splits if R for c in letters]
|
|
inserts = [L + c + R for L, R in splits for c in letters]
|
|
return set(deletes + transposes + replaces + inserts)
|
|
|
|
def edits2(word):
|
|
"All edits that are two edits away from `word`."
|
|
return (e2 for e1 in edits1(word) for e2 in edits1(e1))
|
|
|
|
"""
|
|
|
|
"""
|
|
### extract from derewo
|
|
|
|
#http://www1.ids-mannheim.de/kl/projekte/methoden/derewo.html
|
|
|
|
|
|
raw = textacy.fileio.read_file_lines("DeReKo-2014-II-MainArchive-STT.100000.freq")
|
|
|
|
for line in raw:
|
|
line_list=line.split()
|
|
if line_list[2] == "NN":
|
|
string = line_list[1].lower()
|
|
|
|
# replaceRockDots
|
|
string = re.sub(r'[ß]', "ss", string)
|
|
string = re.sub(r'[ö]', "oe", string)
|
|
string = re.sub(r'[ü]', "ue", string)
|
|
string = re.sub(r'[ä]', "ae", string)
|
|
|
|
|
|
nomen.append(string.lower().strip())
|
|
|
|
|
|
textacy.fileio.write_file_lines(nomen,"nomen2.txt")
|
|
"""
|
|
|
|
"""
|
|
stream = textacy.fileio.read_csv("/home/jannis.grundmann/PycharmProjects/topicModelingTickets/M42-Export/Tickets_2017-09-13.csv", delimiter=";")
|
|
content_collumn_name = "Description"
|
|
content_collumn = 9 # standardvalue
|
|
|
|
de_tickets=[]
|
|
en_tickets=[]
|
|
misc_tickets=[]
|
|
|
|
error_count = 0
|
|
for i, lst in enumerate(stream):
|
|
if i == 0:
|
|
de_tickets.append(lst)
|
|
en_tickets.append(lst)
|
|
misc_tickets.append(lst)
|
|
else:
|
|
try:
|
|
content_collumn_ = lst[content_collumn]
|
|
if detect(content_collumn_) == "de":
|
|
de_tickets.append(lst)
|
|
elif detect(content_collumn_) == "en":
|
|
en_tickets.append(lst)
|
|
else:
|
|
misc_tickets.append(lst)
|
|
|
|
except:
|
|
misc_tickets.append(lst)
|
|
error_count += 1
|
|
|
|
print(error_count)
|
|
|
|
textacy.fileio.write_csv(de_tickets,"M42-Export/de_tickets.csv", delimiter=";")
|
|
textacy.fileio.write_csv(en_tickets,"M42-Export/en_tickets.csv", delimiter=";")
|
|
textacy.fileio.write_csv(misc_tickets,"M42-Export/misc_tickets.csv", delimiter=";")
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
regex_specialChars = r'[`\-=~!#@,.$%^&*()_+\[\]{};\'\\:"|</>?]'
|
|
|
|
|
|
def stringcleaning(stringstream, funclist):
|
|
for string in stringstream:
|
|
for f in funclist:
|
|
string = f(string)
|
|
yield string
|
|
|
|
|
|
def seperate_words_on_regex(regex=regex_specialChars):
|
|
return lambda string: " ".join(re.compile(regex).split(string))
|
|
|
|
|
|
words = [
|
|
"uniaccount",
|
|
"nr54065467",
|
|
"nr54065467",
|
|
"455a33c5,"
|
|
"tvt?=",
|
|
"tanja.saborowski@tu-dortmund.de",
|
|
"-",
|
|
"m-sw1-vl4053.itmc.tu-dortmund.de",
|
|
"------problem--------"
|
|
]
|
|
|
|
|
|
|
|
topLVLFinder = re.compile(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', re.IGNORECASE)
|
|
specialFinder = re.compile(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]', re.IGNORECASE)
|
|
|
|
for s in stringcleaning((w for w in words),[seperate_words_on_regex()]):
|
|
print(s.strip())
|
|
|
|
#print(stringcleaning(w,string_comp))
|
|
#print(bool(re.search(r'\.[a-z]{2,3}(\.[a-z]{2,3})?',w)))
|
|
#print(bool(re.search(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]',w)))
|
|
#result = specialFinder.sub(" ", w)
|
|
#print(re.sub(r'[`\-=~!@#$%^&*()_+\[\]{};\'\\:"|<,./>?]'," ",w))
|
|
|
|
#print(re.sub(r'\.[a-z]{2,3}(\.[a-z]{2,3})?', " ", w))
|
|
"""
|
|
|
|
"""
|
|
def replaceRockDots():
|
|
return lambda string: re.sub(r'[ß]', "ss", (re.sub(r'[ö]', "oe", (re.sub(r'[ü]', "ue", (re.sub(r'[ä]', "ae", string.lower())))))))
|
|
|
|
|
|
|
|
de_stop_words = list(textacy.fileio.read_file_lines(filepath="german_stopwords_full.txt"))
|
|
|
|
|
|
#blob = Text(str(textacy.fileio.read_file("teststring.txt")))#,parser=PatternParser(pprint=True, lemmata=True))
|
|
|
|
#print(blob.entities)
|
|
|
|
de_stop_words = list(map(replaceRockDots(),de_stop_words))
|
|
#LEMMAS = list(map(replaceRockDots(),LEMMAS))
|
|
#VORNAMEN = list(map(replaceRockDots(),VORNAMEN))
|
|
|
|
de_stop_words = list(map(textacy.preprocess.normalize_whitespace,de_stop_words))
|
|
#LEMMAS = list(map(textacy.preprocess.normalize_whitespace,LEMMAS))
|
|
#VORNAMEN = list(map(textacy.preprocess.normalize_whitespace,VORNAMEN))
|
|
|
|
|
|
|
|
|
|
#textacy.fileio.write_file_lines(LEMMAS,"lemmas.txt")
|
|
#textacy.fileio.write_file_lines(VORNAMEN,"firstnames.txt")
|
|
textacy.fileio.write_file_lines(de_stop_words,"german_stopwords.txt")
|
|
|
|
"""
|
|
end = time.time()
|
|
print("\n\n\nTime Elapsed Topic:{0}\n\n".format(end - start))
|
|
|
|
|
|
|